• Experimental Investigation of the Applicability of a 250 kW Ceria Receiver/Reactor for Solar Thermochemical Hydrogen Generation V.K. Thandaa, Th. Fenda1, D. Laabera, A. Lidorb, H. von Storcha, J.P. Säckc, J. Hertel, J. Lamped, S. Menzd, G. Pieschee, S. Bergere, S. Lorentzouf, A. Gonzalesg, A. Vidalg, M. Roeba, Ch. Sattlera. Renewable Energy.
  • Lessons learnt during the construction and start-up of 3 cylindrical cavity-receivers facility integrated in a 750 kW solar tower plant for hydrogen production. González-Pardo, A., Denk, T., Vidal, A. AIP AIP Conference Proceedings 2303, 170008 (2020);
  • An ageing protocol for testing high temperature solar materials for thermochemical applications. Vidal, A., Martinez, D. Solar Energy Materials and Solar Cells, 2020, 212, 110572A .
  • A 100 kW cavity-receiver reactor with an integrated two-step thermochemical cycle: Thermal performance under solar transients. Vidal, A., Gonzalez, A., Denk, T. Renewable Energy, 2020, 153, pp. 270–279.
  • J. González-Aguilar, M. Romero, A. Vidal, 2015, Current status of solar thermochemistry in Spain. Journal of the Japan Institute of Energy 94(3):194-200.
  • M. Ebert, W. Arnold, A. Avila-Marin, T. Denk, J. Hertel, A. Jensch, W. Reinalter, A. Schlierbach, R. Uhlig, 2015, Development of Insulation for High Flux Density Receivers, Energy Procedia, 69, 369-378,
  • L. Roca, R. Diaz Franco, A. De la Calle, A. Vidal, 2014, A control based on a knapsack problem for solar hydrogen production. Optimal Control Applications and Methods, DOI: 10.1002/oca.2118 .
  • R. Fernandez-Saavedra, M. Belen Gomez-Mancebo, C. Caravaca, et al., 2014, Hydrogen production by two-step thermochemical cycles based on commercial nickel ferrite: Kinetic and structural study. Int. J. of Hydrogen Energy, 39, 6819-6826.