MODELING OF A SOLAR REACTOR FOR WATER PURIFICATION, EMPLOYING THE PHOTO-FENTON REACTION

Germán H. Rossetti, Enrique D. Albizzati, and Orlando M. Alfano

Universidad Nacional del Litoral - CONICET
Güemes 3450, 3000 Santa Fe, Argentina
E-mail: alfano@intec.unl.edu.ar
OUTLINE

- Introduction
- Mass Balances
- Kinetic Model
- Radiation Field
- Model Parameters and Numerical Solution
- Predicted and Experimental Results
- Effects of the Reaction Temperature
- Final Remarks
INTRODUCTION

- The Fenton reaction is a chemical system involving hydrogen peroxide and ferrous salts that generates highly reactive hydroxyl radicals.
- The oxidation ability of the Fenton mixture can be greatly enhanced using UV (or UV/Vis) radiation: the photo-Fenton Reaction.

- In this work, the degradation of formic acid (a model pollutant) in aqueous solution using the Fenton and photo-Fenton systems is presented.
- The reaction was conducted in a flat-plate solar reactor placed inside the loop of a batch recycling system.
INTRODUCTION: PREVIOUS WORK

Temperature Effects on the Photo-Fenton Degradation of Formic Acid, ENPROMER 2005, Río de Janeiro, Brasil; III EPOA, Campinas, Brasil.
Keys: (1) storage tank, (2) stirrer, (3) thermometer, (4) liquid sampling, (5) pump, (6) valve, (7) solar radiation, (8) flat-plate reactor, (9) heat exchanger, and (10) thermostatic bath.
PICTURE OF THE EXPERIMENTAL DEVICE

- Flat-plate solar reactor
- Broadband UV Radiometer CUV3 of Kipp & Zonen

- Well-stirred batch recycling photoreactor
OUTLINE

- Introduction
- Mass Balances
 - Kinetic Model
 - Radiation Field
 - Model Parameters and Numerical Solution
- Predicted and Experimental Results
- Effects of the Reaction Temperature
- Final Remarks
MASS BALANCES

(F: formic acid; P: Hydrogen Peroxide)

\[
\frac{dC_F}{dt} = \frac{V_R}{V_T} \langle R_F(x, t) \rangle_{V_R} + \left(\frac{V_{Tk}}{V_T} \right) R_F^t(t)
\]

\[
\frac{dC_P}{dt} = \frac{V_R}{V_T} \langle R_P(x, t) \rangle_{V_R} + \left(\frac{V_{Tk}}{V_T} \right) R_P^t(t)
\]

- Photo-Fenton
- Fenton

Initial conditions:
\[
\begin{align*}
t &= 0 & C_F &= C_F^0 \\
t &= 0 & C_P &= C_P^0
\end{align*}
\]

- V_R/V_T for photo-Fenton
- V_{Tk}/V_T for Fenton
- The average value must be retained in order to account for spatial variations of the photo-Fenton reaction rate
- Spatial variations of the Local Volumetric Rate of Photon Absorption (LVRPA)

N VR/VT for photo-Fenton
N VTk/VT for Fenton
N The average value must be retained in order to account for spatial variations of the photo-Fenton reaction rate
N Spatial variations of the Local Volumetric Rate of Photon Absorption (LVRPA)
OUTLINE

- Introduction
- Mass Balances
- Kinetic Model
 - Radiation Field
 - Model Parameters and Numerical Solution
 - Predicted and Experimental Results
 - Effects of the Reaction Temperature
- Final Remarks
Reaction Scheme (*)

<table>
<thead>
<tr>
<th>Stage</th>
<th>Reaction</th>
<th>Rate Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiation</td>
<td>Fe$^{3+}$ + H$_2$O $\xrightarrow{h\nu}$ Fe$^{2+}$ + HO.\cdot + H$^+$</td>
<td>ϕ</td>
</tr>
<tr>
<td></td>
<td>Fe$^{3+}$ + H$_2$O$_2$ \rightarrow Fe$^{2+}$ + HO$_2$.• + H$^+$</td>
<td>k_1</td>
</tr>
<tr>
<td></td>
<td>Fe$^{2+}$ + H$_2$O$_2$ \rightarrow Fe$^{3+}$ + HO.\cdot + HO$^-$</td>
<td>k_2</td>
</tr>
<tr>
<td>Propagation</td>
<td>H$_2$O$_2$ + HO.\cdot \rightarrow HO$_2$.• + H$_2$O</td>
<td>k_3</td>
</tr>
<tr>
<td></td>
<td>H$_2$O$_2$ + HO$_2$.• \rightarrow HO.\cdot + H$_2$O + O$_2$</td>
<td>k_4</td>
</tr>
<tr>
<td>Termination</td>
<td>2 HO.\cdot \rightarrow H$_2$O$_2$</td>
<td>k_5</td>
</tr>
<tr>
<td></td>
<td>2 HO$_2$.• \rightarrow H$_2$O$_2$ + O$_2$</td>
<td>k_6</td>
</tr>
<tr>
<td></td>
<td>HO$_2$.• + HO.\cdot \rightarrow H$_2$O + O$_2$</td>
<td>k_7</td>
</tr>
<tr>
<td></td>
<td>Fe$^{3+}$ + HO$_2$.• \rightarrow Fe$^{2+}$ + H$^+$ + O$_2$</td>
<td>k_8</td>
</tr>
<tr>
<td></td>
<td>Fe$^{2+}$ + HO$_2$.• + H$^+$ \rightarrow Fe$^{3+}$ + H$_2$O$_2$</td>
<td>k_9</td>
</tr>
<tr>
<td>Decomposition</td>
<td>HCOOH + HO.\cdot \rightarrow CO$_2$.• + H$_2$O + H$^+$</td>
<td>k_{10}</td>
</tr>
<tr>
<td></td>
<td>CO$_2$.• + O$_2$ + H$^+$ \rightarrow CO$_2$ + HO$_2$.•</td>
<td>k_{11}</td>
</tr>
</tbody>
</table>

ASSUMPTIONS FOR THE KINETIC MODEL

The following assumptions have been considered:

- the steady state approximation (SSA) may be applied for highly reactive radicals, such as OH\(\cdot\) and HO\(_2\)\(\cdot\),
- radical-radical termination reactions are neglected as compared with the propagation reactions,
- the ferrous ion concentration remains constant during the reaction time,
- the oxygen concentration is always in excess.
When $\sum_{\lambda} e^a(x,t) = 0$, the pollutant reaction rate is not null. A thermal reaction rate can be identified (Fenton reaction). This term may be represented by the expression:

$$R^t_F(t) = -K_1 \frac{1 + K_2 \left(C_P / C_{Fe^{3+}} \right)}{1 + K_3 \left(C_P / C_F \right)} C_{Fe^{3+}} C_P$$
Introduction
Mass Balances
Kinetic Model
Radiation Field
Model Parameters and Numerical Solution
Predicted and Experimental Results
Effects of the Reaction Temperature
Final Remarks
Schematic representation of the flat-plate solar reactor

At the top, a window made of glass was located

The surface of radiation entrance receives direct solar radiation \((q_D)\) and diffuse solar radiation \((q_S)\)
RADIATION FIELD MODELING

Radiative Transfer Equation:

\[\mu \frac{\partial I_\lambda (x, \mu, \phi)}{\partial x} + \kappa_\lambda I_\lambda (x, \mu, \phi) = 0 \]

\[\mu = \cos \theta \]

\[\mu = \cos \theta \]

- B.C. at \(x = 0 \): (i) reflection and refraction at the interfaces and (ii) radiation absorption inside the glass window
- B.C. at \(x = L \): radiation intensity reaching the reactor bottom is reflected back to the solution in a diffuse manner

Variation of the Radiation Intensity along the ray path

Radiation absorption
Once the radiation intensity $I_\lambda(x,\mu,\phi)$ is obtained, one can compute the LVRPA:

- Radiation may be arriving at one point (P) inside the reaction space from all directions in space.
- An integration over all the arriving rays (θ,ϕ) is required:

$$e_\lambda^a(x) = \kappa_\lambda \int_0^{2\pi} d\phi \int_{-1}^{1} I_\lambda(x,\mu,\phi) d\mu$$

Integrating the previous equation, LVRPA is obtained:
FINAL EXPRESSION OF THE LVRPA

\[e_{\lambda}^{a}(x) = \kappa_{\lambda} \left\{ q_{D,\lambda} \frac{1 - \rho_{a\cdot p}(\mu^*)}{1 - \tau^2_{\lambda}(\mu')} \rho_{p\cdot w}(\mu') \right\} \exp(-\kappa_{\lambda} x / \mu_{r}) + \]

Direct solar radiation

\[2q_{S,\lambda} n^2_{w} \int_{n^2_{a\cdot \mu_{er}}}^{1} \frac{1 - \rho_{a\cdot p}(\mu^*)}{1 - \tau^2_{\lambda}(\mu')} \rho_{a\cdot p}(\mu') \rho_{p\cdot w}(\mu') \right\} \exp(-\kappa_{\lambda} x / \mu) d\mu + \]

Diffuse solar radiation

\[2\rho_{B} q_{B,\lambda} \left\{ \int_{0}^{1} \rho_{w\cdot p}(\mu) \exp[-\kappa_{\lambda}(L + x)/\mu] d\mu + \int_{0}^{1} \exp[-\kappa_{\lambda}(L - x)/\mu] d\mu \right\} \]
OUTLINE

- Introduction
- Mass Balances
- Kinetic Model
- Radiation Field
- Model Parameters and Numerical Solution
 - Predicted and Experimental Results
 - Effects of the Reaction Temperature
 - Final Remarks
SOLAR RADIATION INCIDENT AT THE REACTOR WINDOW

- Sun
- Extraterrestrial Radiation
- Direct radiation
- Diffuse radiation
- Global radiation

θ

Atmosphere
- Ozone
- Oxygen
- Nitrogen
- Carbon Dioxide
- Water Vapor
- Aerosols

Absorption and Scattering
Global radiation on a horizontal surface at ground level for wavelength λ (Bird and Riordan, 1986):

$$q_{G,\lambda} = q_{D,\lambda} \cos \theta_Z + q_{S,\lambda} \quad (\theta_Z = \text{zenith angle})$$

Direct radiation on a surface normal to the sun direction:

$$q_{D,\lambda} = H_{0,\lambda} D T_r,\lambda T_a,\lambda T_w,\lambda T_o,\lambda T_u,\lambda$$

Diffuse radiation on a horizontal surface at ground level:

$$q_{S,\lambda} = q_{r,\lambda} + q_{a,\lambda} + q_{g,\lambda}$$

where: Rayleigh scattering ($q_{r,\lambda}$), aerosol scattering ($q_{a,\lambda}$), multiple reflection of radiation between the ground and the air ($q_{g,\lambda}$)
GLOBAL AND DIFFUSE UV SOLAR RADIATION

- Maximum UV solar radiation: $q_{G,max} \approx 45 \text{ W/m}^2$
- At $\theta_Z > 45^\circ$ → Diffuse radiation > Direct radiation

- Measurements and model predictions:
 - horizontal surface
 - clear sky days

- Model predictions:
 - Global (—)
 - Diffuse (−−−)

- Measurements:
 - Global (◇)
 - Diffuse (□)
RATIO OF UV TO TOTAL SOLAR RADIATION (R)

- UV solar radiation: 4 to 5% of the total solar radiation
- R decreases when the zenith angle is increased

Measurements (◊) and predictions (—):
- horizontal surface
- clear sky days

<table>
<thead>
<tr>
<th>$\theta_z(°)$</th>
<th>R%</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>5.2</td>
</tr>
<tr>
<td>20</td>
<td>5.1</td>
</tr>
<tr>
<td>40</td>
<td>4.8</td>
</tr>
<tr>
<td>60</td>
<td>4.2</td>
</tr>
<tr>
<td>80</td>
<td>3.9</td>
</tr>
</tbody>
</table>

Rosario, Argentina
SPECTRAL DATA

- Global (q_G), direct (q_D) and diffuse (q_S) solar radiation (Bird and Riordan, 1986) for:
 - cloudless sky conditions
 - solar zenith angle = 10°

- Molar absorptivity of the iron complex: $\alpha_{Fe(OH)^{2+}}$
- Absorption coefficient of the glass plate: κ_P
NUMERICAL SOLUTION: COMPUTATIONAL STEPS

Evaluation of the direct and diffuse solar radiation incident at the reactor glass window

Computation of the LVRPA as a function of position

Evaluation of the formic acid and hydrogen peroxide reaction rates

Calculation of the formic acid and hydrogen peroxide concentrations as a function of time

System of two nonlinear, first order, ordinary differential equations
INTRODUCTION

Mass Balances

Kinetic Model

Radiation Field

Model Parameters and Numerical Solution

Predicted and Experimental Results

Effects of the Reaction Temperature

Final Remarks
PREDICTIONS OF THE LVRPA

As expected, the radiation field along the x-coordinate is highly non-uniform:
$e^a(x = 0.5 \text{ L}) \approx 0.2 \ e^a(x = 0)$

- Three different zenith angles: 10°, 30°, 60°
- Constant absorbing species concentration: $C_{Fe(OH)^{2+}} = 1 \text{ mM}$
PREDICTIONS OF THE LVRPA

\(e^a \) as a function of the x-coordinate for:

- three different ferric ion concentrations: \(C_{Fe(OH)^{2+}} = 0.5, 1, 2 \text{ mM} \)
- a constant solar zenith angle: \(\theta_z = 10^\circ \)

→ When the optical density is increased the shape of the LVRPA curve becomes steeper
PREDICTED AND EXPERIMENTAL RESULTS (T = 25 °C)

- Model predictions and experimental data as a function of time
- Formic acid relative concentration:
 - Fenton (---)
 - photo-Fenton (-----)
- H$_2$O$_2$ relative concentration:
 - Fenton (---)
 - photo-Fenton (-----)

$C_p/C_F = 3.3$
$	heta_z = 12.8°$
A similar representation is shown for a higher C_p/C_F.

Conversion for the photo-Fenton reaction is always higher than that obtained with the Fenton reaction.

Model and experimental results show good agreement.

The maximum error is 9%.
COMPARISON BETWEEN FENTON AND PHOTO-FENTON CONVERSIONS (25 °C)

<table>
<thead>
<tr>
<th></th>
<th>Fenton ε(%)</th>
<th>Photo-Fenton ε(%)</th>
<th>Enhanc.(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pollutant conversion (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_p/C_F</td>
<td>Exp. Data</td>
<td>Predictions</td>
<td>Exp. Data</td>
</tr>
<tr>
<td>3.3</td>
<td>29.3</td>
<td>31.1</td>
<td>80.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>37.6</td>
<td>39.7</td>
<td>80.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.4</td>
<td>43.2</td>
<td>45.7</td>
<td>79.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- A conversion of 81% has been achieved for the lowest C_p/C_F
- The photo-Fenton system produces a conversion up to 175% greater than that obtained with the Fenton reaction ($C_p/C_F=3.3$)
<table>
<thead>
<tr>
<th>C<sub>p</sub>/C<sub>F</sub></th>
<th>Pollutant conversion (%)</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fenton ε(%)</td>
<td>photo-Fenton ε(%)</td>
</tr>
<tr>
<td>Exp. Data</td>
<td>3.3 29.3</td>
<td>-</td>
</tr>
<tr>
<td>Predictions</td>
<td>3.3 31.1</td>
<td>6.1</td>
</tr>
<tr>
<td>Exp. Data</td>
<td>5.4 37.6</td>
<td>-</td>
</tr>
<tr>
<td>Predictions</td>
<td>5.4 39.7</td>
<td>5.6</td>
</tr>
<tr>
<td>Exp. Data</td>
<td>8.4 43.2</td>
<td>-</td>
</tr>
<tr>
<td>Predictions</td>
<td>8.4 45.7</td>
<td>5.8</td>
</tr>
</tbody>
</table>

Notice that the photo-Fenton conversion decreases when the C_p/C_F initial molar ratio is increased.
EFFECTS OF THE H2O2 ON FORMIC ACID CONVERSION (T = 25 °C)

The change in the H2O2 concentration (Cp) may have two opposite effects:

- At low Cp, ferrous ion (Fe²⁺) generation may be too low and so will be the OH⁻ generation.
- At high Cp, H2O2 acts as a radical trapping agent, thus competing with the pollutant degradation path and rendering lower degradation rates:

 \[
 \text{H}_2\text{O}_2 + \text{HO}^- \rightarrow \text{HO}_2^- + \text{H}_2\text{O}
 \]

- Thus, an optimal molar ratio Cp/Cf should be expected.
PARAMETRIC STUDY: EFFECTS OF THE H₂O₂ ON FORMIC ACID CONVERSION

 XF (t = 1 h) vs. CP/CF:

- Fenton and ph-Fenton

- θZ = 10°, 40°, 70°

† At high values of θZ, increasing the CP/CF ratio increases the conversion

† At low values of θZ (high radiation), an optimal molar ratio CP/CF is observed
COMPARISON BETWEEN FENTON AND PHOTO-FENTON CONVERSIONS (t = 20 min)

- Model predictions of formic acid conversion:
 - Fenton (—)
 - photo-Fenton (—)

- Experimental data:
 - Fenton (▼)
 - photo-Fenton (■)

- Increasing the reaction temperature decreases the enhancement of the pollutant conversion.
UV solar radiation improves the effectiveness of the Fenton process.

For the lowest temperature 25°C, the pollutant conversion is significantly increased.

Intermediate behavior for 40°C.

For the highest temperature 55°C, this effect is less important.
FINAL REMARKS

- Increased reaction temperature can enhance the reaction rate of the Fenton and photo-Fenton processes.

- However, at higher temperatures: (i) this conversion enhancement is less important and (ii) the efficiency of hydrogen peroxide declines: decomposition of H_2O_2 into oxygen and water (Malik and Saha, 2003).

- It is possible to take advantage of the natural temperature of a wastewater at the end of the process (in the textile industry: Rodríguez et al., 2002).

- Possibility of a combined photochemically and thermally enhanced Fenton process, using solar energy (UV/Vis + IR photons: Sagawe et al., 2001).
THANKS

- Dr. Rubén D. Piacentini, Grupo de Energía Solar, Instituto de Física Rosario (IFIR), Rosario - Argentina
- UNIVERSIDAD NACIONAL DEL LITORAL (UNL) (National University of Litoral, Santa Fe - Argentina)
- CONSEJO NACIONAL DE INVESTIGACIONES CIENTIFICAS Y TECNICAS (CONICET) (National Council for Science and Technology of Argentina)
- AGENCIA NACIONAL DE PROMOCION CIENTIFICA Y TECNOLOGICA (ANPCYT) (National Agency for the Promotion of Science and Technology of Argentina)